metabelian, supersoluble, monomial
Aliases: C62.53C23, C6.9(S3×Q8), C6.49(S3×D4), Dic3⋊6(C4×S3), C6.D6⋊3C4, Dic3⋊C4⋊14S3, (C2×C12).199D6, C2.2(Dic3⋊D6), (C2×Dic3).65D6, Dic3⋊Dic3⋊24C2, (C6×C12).231C22, C2.3(Dic3.D6), (C6×Dic3).34C22, C3⋊1(S3×C4⋊C4), C2.18(C4×S32), (C2×C4).95S32, C32⋊5(C2×C4⋊C4), C6.17(S3×C2×C4), C3⋊S3⋊3(C4⋊C4), (C2×C3⋊S3).8Q8, (C2×C3⋊S3).54D4, C22.33(C2×S32), (C3×C6).93(C2×D4), (C3×C6).26(C2×Q8), (C3×Dic3)⋊3(C2×C4), (C3×Dic3⋊C4)⋊13C2, (C3×C6).16(C22×C4), (C2×C6).72(C22×S3), (C2×C6.D6).2C2, (C22×C3⋊S3).70C22, (C2×C3⋊Dic3).130C22, (C2×C4×C3⋊S3).20C2, (C2×C3⋊S3).30(C2×C4), SmallGroup(288,531)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.53C23
G = < a,b,c,d,e | a6=b6=1, c2=d2=b3, e2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece-1=b3c, ede-1=b3d >
Subgroups: 786 in 211 conjugacy classes, 66 normal (18 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C23, C32, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C4⋊C4, C22×C4, C3⋊S3, C3×C6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C2×C4⋊C4, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, C2×C3⋊S3, C62, Dic3⋊C4, Dic3⋊C4, C4⋊Dic3, C3×C4⋊C4, S3×C2×C4, C6.D6, C6.D6, C6×Dic3, C4×C3⋊S3, C2×C3⋊Dic3, C6×C12, C22×C3⋊S3, S3×C4⋊C4, Dic3⋊Dic3, C3×Dic3⋊C4, C2×C6.D6, C2×C4×C3⋊S3, C62.53C23
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, C23, D6, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4×S3, C22×S3, C2×C4⋊C4, S32, S3×C2×C4, S3×D4, S3×Q8, C2×S32, S3×C4⋊C4, Dic3.D6, C4×S32, Dic3⋊D6, C62.53C23
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 43 9 45 11 47)(8 44 10 46 12 48)(19 30 23 28 21 26)(20 25 24 29 22 27)(31 40 33 42 35 38)(32 41 34 37 36 39)
(1 36 16 41)(2 31 17 42)(3 32 18 37)(4 33 13 38)(5 34 14 39)(6 35 15 40)(7 21 45 30)(8 22 46 25)(9 23 47 26)(10 24 48 27)(11 19 43 28)(12 20 44 29)
(1 41 16 36)(2 40 17 35)(3 39 18 34)(4 38 13 33)(5 37 14 32)(6 42 15 31)(7 30 45 21)(8 29 46 20)(9 28 47 19)(10 27 48 24)(11 26 43 23)(12 25 44 22)
(1 21 4 24)(2 22 5 19)(3 23 6 20)(7 33 10 36)(8 34 11 31)(9 35 12 32)(13 27 16 30)(14 28 17 25)(15 29 18 26)(37 47 40 44)(38 48 41 45)(39 43 42 46)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,36,16,41)(2,31,17,42)(3,32,18,37)(4,33,13,38)(5,34,14,39)(6,35,15,40)(7,21,45,30)(8,22,46,25)(9,23,47,26)(10,24,48,27)(11,19,43,28)(12,20,44,29), (1,41,16,36)(2,40,17,35)(3,39,18,34)(4,38,13,33)(5,37,14,32)(6,42,15,31)(7,30,45,21)(8,29,46,20)(9,28,47,19)(10,27,48,24)(11,26,43,23)(12,25,44,22), (1,21,4,24)(2,22,5,19)(3,23,6,20)(7,33,10,36)(8,34,11,31)(9,35,12,32)(13,27,16,30)(14,28,17,25)(15,29,18,26)(37,47,40,44)(38,48,41,45)(39,43,42,46)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,43,9,45,11,47)(8,44,10,46,12,48)(19,30,23,28,21,26)(20,25,24,29,22,27)(31,40,33,42,35,38)(32,41,34,37,36,39), (1,36,16,41)(2,31,17,42)(3,32,18,37)(4,33,13,38)(5,34,14,39)(6,35,15,40)(7,21,45,30)(8,22,46,25)(9,23,47,26)(10,24,48,27)(11,19,43,28)(12,20,44,29), (1,41,16,36)(2,40,17,35)(3,39,18,34)(4,38,13,33)(5,37,14,32)(6,42,15,31)(7,30,45,21)(8,29,46,20)(9,28,47,19)(10,27,48,24)(11,26,43,23)(12,25,44,22), (1,21,4,24)(2,22,5,19)(3,23,6,20)(7,33,10,36)(8,34,11,31)(9,35,12,32)(13,27,16,30)(14,28,17,25)(15,29,18,26)(37,47,40,44)(38,48,41,45)(39,43,42,46) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,43,9,45,11,47),(8,44,10,46,12,48),(19,30,23,28,21,26),(20,25,24,29,22,27),(31,40,33,42,35,38),(32,41,34,37,36,39)], [(1,36,16,41),(2,31,17,42),(3,32,18,37),(4,33,13,38),(5,34,14,39),(6,35,15,40),(7,21,45,30),(8,22,46,25),(9,23,47,26),(10,24,48,27),(11,19,43,28),(12,20,44,29)], [(1,41,16,36),(2,40,17,35),(3,39,18,34),(4,38,13,33),(5,37,14,32),(6,42,15,31),(7,30,45,21),(8,29,46,20),(9,28,47,19),(10,27,48,24),(11,26,43,23),(12,25,44,22)], [(1,21,4,24),(2,22,5,19),(3,23,6,20),(7,33,10,36),(8,34,11,31),(9,35,12,32),(13,27,16,30),(14,28,17,25),(15,29,18,26),(37,47,40,44),(38,48,41,45),(39,43,42,46)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 4C | ··· | 4J | 4K | 4L | 6A | ··· | 6F | 6G | 6H | 6I | 12A | ··· | 12H | 12I | ··· | 12P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 9 | 9 | 9 | 9 | 2 | 2 | 4 | 2 | 2 | 6 | ··· | 6 | 18 | 18 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | ··· | 4 | 12 | ··· | 12 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | + | + | + | - | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | S3 | D4 | Q8 | D6 | D6 | C4×S3 | S32 | S3×D4 | S3×Q8 | C2×S32 | Dic3.D6 | C4×S32 | Dic3⋊D6 |
kernel | C62.53C23 | Dic3⋊Dic3 | C3×Dic3⋊C4 | C2×C6.D6 | C2×C4×C3⋊S3 | C6.D6 | Dic3⋊C4 | C2×C3⋊S3 | C2×C3⋊S3 | C2×Dic3 | C2×C12 | Dic3 | C2×C4 | C6 | C6 | C22 | C2 | C2 | C2 |
# reps | 1 | 2 | 2 | 2 | 1 | 8 | 2 | 2 | 2 | 4 | 2 | 8 | 1 | 2 | 2 | 1 | 2 | 2 | 2 |
Matrix representation of C62.53C23 ►in GL8(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 6 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0],[0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,7,2,0,0,0,0,0,0,1,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,6,11,0,0,0,0,0,0,12,7,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,8,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;
C62.53C23 in GAP, Magma, Sage, TeX
C_6^2._{53}C_2^3
% in TeX
G:=Group("C6^2.53C2^3");
// GroupNames label
G:=SmallGroup(288,531);
// by ID
G=gap.SmallGroup(288,531);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,120,422,219,58,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^6=1,c^2=d^2=b^3,e^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c,e*d*e^-1=b^3*d>;
// generators/relations